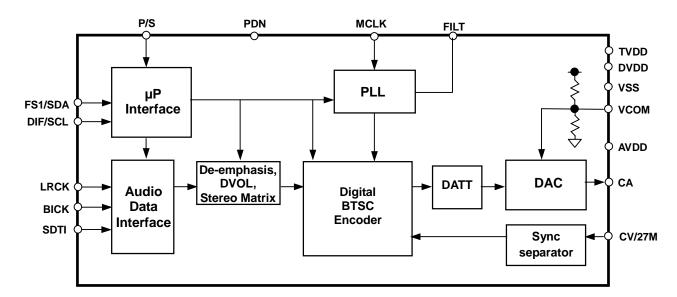


Asahi KASEI

= Preliminary =

AK4145

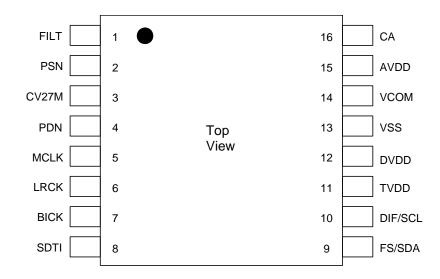

Digital BTSC Stereo Encoder

GENERAL DESCRIPTION

The AK4145 is a BTSC Encoder with D/A Converter, which is optimized for Digital AV application. The AK4145 achieves high audio performance using the digital BTSC encoding architecture requires no alignment of external parts. The AK4145 supports major audio data formats (MSB justified, I²S, TDM) to interface with usual DSP. Therefore, the AK4145 is suitable for the systems such as Digital STB/TV, digital recorder.

FEATURES

- ☐ Alignment Free Digital BTSC Stereo Encoding
- ☐ Base band Composite Audio Output (Mono/Stereo)
- ☐ Digital Volume for Composite Audio Output
- ☐ Digital De-emphasis filter (32k/44.1k/48kHz)
- ☐ Stereo Digital Volume Control for Audio Input Data
- ☐ Soft Mute
- ☐ Sampling Rate (fs): 32k/44.1k/48kHz
- ☐ Master Clock: 256fs/384fs/512fs/768fs
- ☐ I/F format: 24-Bit MSB justified, 24/20/16-Bit LSB justified or I²S
- ☐ Control: Standalone/l²C-bus Selectable
- ☐ Video Input for Pilot Synchronization
- ☐ S/(N+D): 0.01%
- ☐ S/N: 82dB
- ☐ Channel Separation: 47dB
- ☐ Power Supply: 1.7V ~ 1.9V, 2.7 ~ 3.6V
- ☐ Ta: -20 ~ 85°C



[AK4145]

■ Ordering Guide

AK4145ET -20 ~ +85°C 16pinTSSOP AKD4145 **Evaluation Board**

■ Pin Layout

PIN/FUNCTION

No.	Pin Name	I/O	Function
1	FILT	-	Filter Pin, 4.7nF should be connected between FILT pin and VSS pin.
2	PSN	I	Parallel/Serial Select Pin (Internal pull-up pin)
			"L": Serial control mode, "H": Parallel control mode
3	CV27M	I	Composite Video or 27MHz Signal Input Pin.
4	PDN	I	Power-Down Mode Pin
			When at "L", the AK4145 is in the power-down mode and is held in reset.
			The AK4145 must be reset once upon power-up.
5	MCLK	I	Master Clock Input Pin
6	LRCK	I	Channel Clock Input Pin
7	BICK	I	Audio Serial Data Clock Input Pin
8	SDTI	I	Audio Serial Data Input Pin
9	FS	I	Sampling Rate Control Pin in parallel control mode
	SDA	I/O	Control Data Pin in serial control mode
10	DIF	I	Audio Data Interface Format Pin in parallel control mode
	SCL	I	Control Data Clock Pin in serial control mode
11	TVDD	-	Digital I/O Power Supply Pin, DVDD(min:1.7V) ~ 3.6V
12	DVDD	-	Digital Power Supply Pin, 1.7 ~ 1.9V
13	VSS	-	Ground Pin
14	VCOM	О	Common Voltage Pin, AVDD/2
			Normally connected to VSS with a 0.1µF ceramic capacitor in parallel with a 10µF
			electrolytic cap.
15	AVDD	-	Analog Power Supply Pin, 2.7 ~ 3.6V
16	CA	0	Baseband Composite Audio Output Pin

Note: All input pins except pull-up pin should not be left floating.

■ Handling of Unused Pin

The unused I/O pins should be processed appropriately as below.

Classification	Pin Name	Setting		
Analog	CV	Connect to VSS.		
Digital	FS(Parallel mode), DIF(Parallel mode)	Connect to VDD or VSS.		

■ Output Status at PDN pin = "L"

Below is the output status of each output pin when the PDN pin = "L".

Pin#	Pin Name	Status
1	FILT	VSS
9	SDA	Hi-Z
14	VCOM	VSS
16	CA	VCOM(=VSS)

ABSOLUTE MAXIMUM RATINGS

(VSS=0V; Note 1)

Parameter	Symbol	min	max	Units
Power Supply	AVDD	-0.3	4.3	V
	DVDD	-0.3	2.4	V
	TVDD	-0.3	4.3	V
Input Current, Any Pin Except Supply	IIN	-	±10	mA
Input Voltage (All input pins)	VIND	-0.3	TVDD+0.3	V
Ambient Temperature (powered applied)	Ta	-20	85	°C
Storage Temperature	Tstg	-65	150	°C

Note 1. All voltages with respect to ground.

Note 2. PSN, CV27M, PDN, MCLK, LRCK, BICK, SDTI, FS/SDA, DIF/SCL pin

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS								
(VSS=0V; Note 1)								
Parameter	Symbol	min	typ	max	Units			
Power Supply	AVDD	2.7	3.3	3.6	V			
	DVDD	1.7	1.8	1.9	V			
	TVDD	DVDD	3.3	3.6	V			

WARNING: AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet.

ANALOG CHARACTERISTICS

(Ta=25°C; AVDD=TVDD=3.3V; DVDD=1.8V; fs=48kHz; BICK=64fs; Signal Frequency=1kHz; 16bit Data; Measurement frequency=50Hz ~ 13kHz; unless otherwise specified)

Parameter	min	typ	max	Units	
Resolution			16	Bits	
Composite Audio Output C					
Output Voltage			2.2		Vp-p
Load Resistance	(Note 4)	5			kΩ
Load Capacitance				25	pF
BTSC Encoder Characteris	stics (Note 5)				
S/(N+D)	Mono (1kHz, 100%EIM)		0.01	TBD	%
	Stereo (1kHz, 100%EIM. L or R)		0.01	TBD	%
S/N	Mono (input off)	75	82		dB
(A-weighted)	Stereo (input off)	75	82		dB
Stereo Separation	1kHz		47		dB
	20Hz~500Hz	30			dB
	500Hz~5kHz	27			dB
	5kHz~13kHz	23			dB
Frequency response	Mono (20~13kHz)	-1		1	dB
	Stereo (20~13kHz)	-1		1	dB
Video Sync Input Characte	eristics				
Video Input Sync Level		100			mVp-p
Video Input Impedan		1		ΜΩ	
Power Supplies					
Power Supply Current					
Normal Operation (F	PDN pin = "H"):				
AVDD	•		13	TBD	mA
DVDD			8	TBD	mA
TVDD			0.1	TBD	mA
	PDN pin = "L"): (Note 3)				
AVDD		10	100	μΑ	
DVDD		10	100	μΑ	
TVDD			10	100	μA

Note 3. All digital input pins are held to VSS.

Note 4. AC-load.

Note 5. Received by the Belar TVM230 (BTSC Decoder) and measured by the Audio Precision (System Two). Refer to the evaluation board manual.

DC CHARACTERISTICS

(Ta=-20~ 85°C; AVDD=TVDD=1.7~3.6V, DVDD=1.7~1.9V)

Parameter	Symbol	min	typ	Max	Units
High-Level Input Voltage					
TVDD < 2.7V	VIH	80%TVDD	-	-	V
$TVDD \ge 2.7V$	VIH	70%TVDD	-	-	V
Low-Level Input Voltage					
TVDD < 2.7V	VIL	-	-	20%TVDD	V
$TVDD \ge 2.7V$	VIL	-	-	30%TVDD	V
Low-Level Output Voltage (SDA pin: Iout= 3mA)	VOL	-	ı	0.4	V
Input Leakage Current	Iin	-	-	± 10	μΑ

SWITCHING CHARACTERISTICS

(Ta=-20~ 85°C; AVDD=2.7 ~ 3.6V, TVDD=1.7~3.6V, DVDD=1.7~1.9V)

Parameter	Symbol	min	typ	max	Units
Master Clock Frequency	fCLK	8.192		36.8640	MHz
Duty Cycle	dCLK	40		60	%
LRCK Frequency	fs	32		48	kHz
Duty Cycle	Duty	45		55	%
Audio Interface Timing					
BICK Period	tBCK	1/128fs			ns
BICK Pulse Width Low	tBCKL	30			ns
Pulse Width High	tBCKH	30			ns
BICK rising to LRCK Edge (Note	tBLR	20			ns
LRCK Edge to BICK rising (Note (tLRB	20			ns
SDTI Hold Time	tSDH	20			ns
SDTI Setup Time	tSDS	20			ns
Control Interface Timing (I ² C Bus)					
SCL Clock Frequency	fSCL	-		400	kHz
Bus Free Time Between Transmissions	tBUF	1.3		-	μs
Start Condition Hold Time	tHD:STA	0.6		-	μs
(prior to first clock pulse)					
Clock Low Time	tLOW	1.3		-	μs
Clock High Time	tHIGH	0.6		-	μs
Setup Time for Repeated Start Condition	tSU:STA	0.6		-	μs
SDA Hold Time from SCL Falling (Note	7) tHD:DAT	0		-	μs
SDA Setup Time from SCL Rising	tSU:DAT	0.1		-	μs
Rise Time of Both SDA and SCL Lines	tR	_		0.3	μs
Fall Time of Both SDA and SCL Lines	tF	-		0.3	μs
Setup Time for Stop Condition	tSU:STO	0.6		-	μs
Pulse Width of Spike Noise Suppressed by Input Fi	lter tSP	-		50	ns
Capacitive load on bus	Cb	0		400	pF
Reset Timing					
PDN Pulse Width (Note 8) tPD	150			ns

Note 6. BICK rising edge must not occur at the same time as LRCK edge.

Note 7. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.

Note 8. The AK4145 can be reset by bringing the PDN pin = "L".

Note 9. I²C is a registered trademark of Philips Semiconductors.

[AK4145]

■ Timing Diagram

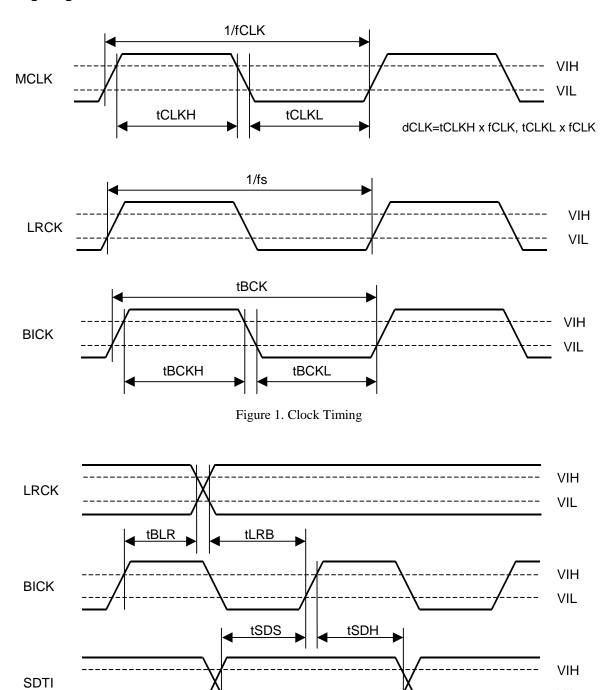
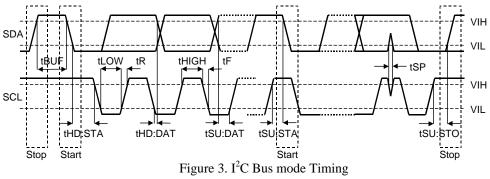



Figure 2. Serial Interface Timing

VIL

[AK4145]

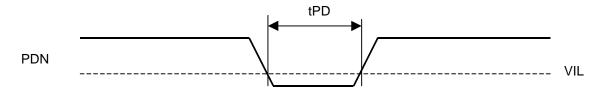
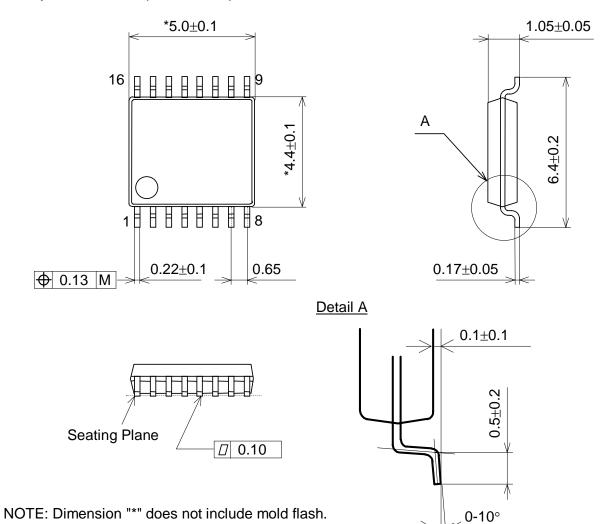
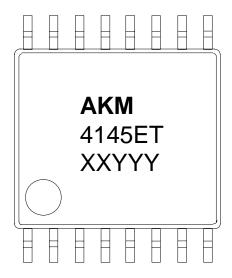



Figure 4. Power-down Timing

PACKAGE

16pin TSSOP (Unit: mm)


■ Material & Lead finish

Package molding compound: Epoxy Lead frame material: Cu

Lead frame surface treatment: Solder plate (Pb Free)

MARKING

1) Pin #1 indication

2) Date Code: XXYYY (5 digits)

XX: Lot# YYY: Date Code Marketing Code : 4145ET

4) Asahi Kasei Logo

3)

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.

 When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei EMD Corporation (AKEMD) or authorized distributors as to current status of the products.
- AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official
 approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
 or strategic materials.
- AKEMD products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKEMD assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKEMD. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

• It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any and all claims arising from the use of said product in the absence of such notification.

Thank you for your access to AKEMD product informations.

More detail product informations are available, please contact our sales office or authorized distributors.